NAM ASBU Handbook
Supporting analysis and implementation reporting of the ICAO ASBU Modules

November 2015
Foreword

The *NAM ASBU Handbook* was created to assist in the application of the Aviation System Block Upgrade (ASBU) approach as detailed in the Fourth Edition of the *Global Air Navigation Plan* (GANP, Doc 9750).

The ASBU approach was globally endorsed during the 38th Assembly of the International Civil Aviation Organization (ICAO) which took place at ICAO Headquarters in Montréal, Canada, from 28 September to 4 October 2013, via the adoption of the 4th Edition of the GANP, which was presented to the Technical Commission of the 38th Assembly by the Council of ICAO in Appendix A to A38-WP/39 - A Comprehensive Strategy for Air Navigation: Endorsement of the Global Air Navigation Plan.

As noted in A38-WP/39, the Fourth Edition of the GANP was meant to “provide clear guidance on the guiding operational targets and supporting technologies, avionics, procedures, standards and regulatory approvals needed to realize them” and to establish “a framework for incremental implementations based on the specific operational profiles and traffic densities of each State” (A38-WP/39 paragraph 2.1 refers).

The detailed material which formed the basis of the Fourth Edition of the GANP was presented at the 12th Air Navigation Conference (12th ANC) which took place at ICAO Headquarters from 19 to 30 November, 2012. This base material was subsequently updated to incorporate the recommendations of the 12th ANC and is made available by ICAO as *The Aviation System Block Upgrades - ASBUs (Edition March 2013)* (ASBU Working Document); this document is only accessible on the website for the 12th ANC, via the following link:

http://www.icao.int/Meetings/anconf12/Pages/Aviation-System-Block-Upgrades.aspx

The *NAM ASBU Handbook* references both the GANP and the ASBU Working Document.

Please provide any comments, corrections or suggestions regarding the *NAM ASBU Handbook* to:

Midori Tanino Midori.Tanino@faa.gov

and

Carole Stewart-Green Carole.Stewart@navcanada.ca
Explanation of the Handbook

When analyzing the ASBU Modules for applicability in a Region or a State, it can be difficult to determine what specific technological or procedural implementations are associated with each Module. The descriptions provided in the GANP are at a very high level of detail. Specific information for each Module was found in the ASBU Working Document, including, for most Modules, “Elements” which represented specific technical or procedural implementations. In some cases, the Elements could be directly copied from the ASBU Working Document, but in many cases, the specific technical or procedural implementation needed to be derived through careful review of the Module text.

The NAM ASBU Handbook provides an outline of the ASBU Modules to the Element level. The Elements are categorized as follows:

* **Defined** - Word for word, the text for the Element as provided in the ASBU Working Document
* **Derived** - An Element from the ASBU Working Document edited for clarity or specificity or developed on the basis of the Module description in the ASBU Working Document.
* **Identified** - An Element developed by a Region or State which uses a similar technology or method to achieve the same results as other Elements Defined or Derived for that Module.

The sources of the detailed Module descriptions in this Handbook are indicated in the following diagram:

<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>B# - Acronym - GANP</td>
<td>Thread name GANP, page 45, Module name, GANP</td>
</tr>
<tr>
<td>Begins page # - ASBU Working Document</td>
<td>Performance Improvement Area (PIA)</td>
</tr>
<tr>
<td>Summary Description</td>
<td>GANP</td>
</tr>
<tr>
<td>GANP, pages 46-87</td>
<td></td>
</tr>
<tr>
<td>Operating Environment/Phases of Flight</td>
<td></td>
</tr>
<tr>
<td>ASBU Working Document</td>
<td></td>
</tr>
<tr>
<td>Applicability Considerations</td>
<td></td>
</tr>
<tr>
<td>GANP, pages 46-87</td>
<td></td>
</tr>
<tr>
<td>Elements</td>
<td></td>
</tr>
<tr>
<td>ASBU Working Document</td>
<td></td>
</tr>
<tr>
<td>“Derived from” indicates the paragraph number where the source concept was described</td>
<td></td>
</tr>
<tr>
<td>“Defined” indicates the Element number as per the ASBU Working Document</td>
<td></td>
</tr>
<tr>
<td>“Identified” indicates the Region or State which developed the Element</td>
<td></td>
</tr>
</tbody>
</table>

The Handbook provides the ASBU Modules in alphabetical order. This is different from the order in which they appear in the GANP on pages 46-87, the order on pages 40-44, the order in which the Threads are presented on page 45 and the order corresponding to the Table of Contents of the ASBU Working Document. None of these orders matches another.
Table of Contents

Foreword .. i
Explanation of the Handbook .. ii
Table of Contents .. iii
Index of ASBU Modules by PIA .. vi
Index of ASBU Modules by Thread, Block and Page .. vii

ASBU Modules by Block

- **Block 0 - For implementation in the 2013 - 2018 timeframe** ... 1
 - PIA 1: Airport Operations ... 1
 - B0-ACDM ... 1
 - B0-APTA ... 2
 - B0-RSEQ ... 3
 - B0-SURF ... 4
 - B0-WAKE ... 5
 - PIA 2: Globally Interoperable Systems and Data - Through Globally Interoperable System Wide Information Management .. 6
 - B0-AMET ... 6
 - B0-DATM ... 7
 - B0-FICE .. 8
 - PIA 3: Optimum Capacity and Flexible Flights – Through Global Collaborative ATM 8
 - B0-ACAS ... 8
 - B0-ASEP ... 9
 - B0-ASUR .. 9
 - B0-FRTO .. 10
 - B0-NOPS .. 10
 - B0-OPFL ... 11
 - B0-SNET ... 11
 - PIA 4: Efficient Flight Path – Through Trajectory-based Operations 12
 - B0-CCO ... 12
 - B0-CDO ... 13
 - B0-TBO ... 14
Block 1 - For implementation in the 2018 - 2023 timeframe.......................... 15
PIA 1: Airport Operations ... 15
 B1-ACDM .. 15
 B1-APTA .. 16
 B1-RATS ... 17
 B1-RSEQ ... 18
 B1-SURF ... 19
 B1-WAKE .. 20
PIA 2: Globally Interoperable Systems and Data - Through Globally Interoperable
 System Wide Information Management .. 21
 B1-AMET ... 21
 B1-DATM ... 22
 B1-FICE .. 22
 B1-SWIM ... 23
PIA 3: Optimum Capacity and Flexible Flights - Through Global Collaborative ATM 23
 B1-ASEP ... 23
 B1-FRTO ... 24
 B1-NOPS ... 25
 B1-SNET ... 26
PIA 4: Efficient Flight Paths - Through Trajectory-based Operations 26
 B1-CDO ... 26
 B1-RPAS ... 27
 B1-TBO ... 28
Block 2 - For implementation in the 2023 - 2028 timeframe

PIA 1: Airport Operations
 B2-RSEQ
 B2-SURF
 B2-WAKE

PIA 2: Globally Interoperable Systems and Data
 B2-FICE
 B2-SWIM

PIA 3: Optimum Capacity and Flexible Flights
 B2-ACAS
 B2-ASEP
 B2-NOPS

PIA 4: Efficient Flight Paths
 B2-CDO
 B2-RPAS

Block 3 - For implementation in the 2028 - onwards timeframe

PIA 1: Airport Operations
 B3-RSEQ

PIA 2: Globally Interoperable Systems and Data
 B3-AMET
 B3-FICE

PIA 3: Optimum Capacity and Flexible Flights
 B3-NOPS

PIA 4: Efficient Flight Paths
 B3-RPAS
 B3-TBO
Index of ASBU Modules by PIA

PIA 1: Airport Operations

<table>
<thead>
<tr>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0-ACDM</td>
<td>1</td>
</tr>
<tr>
<td>B1-ACDM</td>
<td>15</td>
</tr>
<tr>
<td>B0-AFTA</td>
<td>2</td>
</tr>
<tr>
<td>B1-AFTA</td>
<td>16</td>
</tr>
<tr>
<td>B1-RATS</td>
<td>17</td>
</tr>
<tr>
<td>B0-RSEQ</td>
<td>3</td>
</tr>
<tr>
<td>B1-RSEQ</td>
<td>18</td>
</tr>
<tr>
<td>B2-RSEQ</td>
<td>29</td>
</tr>
<tr>
<td>B3-RSEQ</td>
<td>34</td>
</tr>
<tr>
<td>B0-SURF</td>
<td>4</td>
</tr>
<tr>
<td>B1-SURF</td>
<td>19</td>
</tr>
<tr>
<td>B2-SURF</td>
<td>29</td>
</tr>
<tr>
<td>B0-WAKE</td>
<td>5</td>
</tr>
<tr>
<td>B1-WAKE</td>
<td>20</td>
</tr>
<tr>
<td>B2-WAKE</td>
<td>30</td>
</tr>
</tbody>
</table>

PIA 2: Globally Interoperable Systems and Data - Through Globally Interoperable System Wide Information Management

<table>
<thead>
<tr>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0-AMET</td>
<td>6</td>
</tr>
<tr>
<td>B1-AMET</td>
<td>21</td>
</tr>
<tr>
<td>B3-AMET</td>
<td>35</td>
</tr>
<tr>
<td>B0-DATM</td>
<td>7</td>
</tr>
<tr>
<td>B1-DATM</td>
<td>22</td>
</tr>
<tr>
<td>B0-FICE</td>
<td>8</td>
</tr>
<tr>
<td>B1-FICE</td>
<td>22</td>
</tr>
<tr>
<td>B2-FICE</td>
<td>30</td>
</tr>
<tr>
<td>B3-FICE</td>
<td>35</td>
</tr>
<tr>
<td>B1-SWIM</td>
<td>23</td>
</tr>
<tr>
<td>B2-SWIM</td>
<td>31</td>
</tr>
</tbody>
</table>

PIA 3: Optimum Capacity and Flexible Flights – Through Global Collaborative ATM

<table>
<thead>
<tr>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0-ACAS</td>
<td>8</td>
</tr>
<tr>
<td>B2-ACAS</td>
<td>31</td>
</tr>
<tr>
<td>B0-ASEP</td>
<td>9</td>
</tr>
<tr>
<td>B1-ASEP</td>
<td>23</td>
</tr>
<tr>
<td>B2-ASEP</td>
<td>32</td>
</tr>
<tr>
<td>B0-ASUR</td>
<td>9</td>
</tr>
<tr>
<td>B0-FRTO</td>
<td>10</td>
</tr>
<tr>
<td>B1-FRTO</td>
<td>24</td>
</tr>
<tr>
<td>B0-NOPS</td>
<td>10</td>
</tr>
<tr>
<td>B1-NOPS</td>
<td>25</td>
</tr>
<tr>
<td>B2-NOPS</td>
<td>32</td>
</tr>
<tr>
<td>B3-NOPS</td>
<td>36</td>
</tr>
<tr>
<td>B0-OPFL</td>
<td>11</td>
</tr>
<tr>
<td>B0-SNET</td>
<td>11</td>
</tr>
<tr>
<td>B1-SNET</td>
<td>26</td>
</tr>
</tbody>
</table>

PIA 4: Efficient Flight Path – Through Trajectory-based Operations

<table>
<thead>
<tr>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0-CCO</td>
<td>12</td>
</tr>
<tr>
<td>B0-CDO</td>
<td>13</td>
</tr>
<tr>
<td>B1-CDO</td>
<td>26</td>
</tr>
<tr>
<td>B2-CDO</td>
<td>33</td>
</tr>
<tr>
<td>B1-RPAS</td>
<td>27</td>
</tr>
<tr>
<td>B2-RPAS</td>
<td>33</td>
</tr>
<tr>
<td>B3-RPAS</td>
<td>36</td>
</tr>
<tr>
<td>B0-TBO</td>
<td>14</td>
</tr>
<tr>
<td>B1-TBO</td>
<td>28</td>
</tr>
<tr>
<td>B3-TBO</td>
<td>37</td>
</tr>
</tbody>
</table>

November 2015
Index of ASBU Modules by Thread, Block and Page

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Thread</th>
<th>B0</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACAS</td>
<td>Airborne Collision Avoidance Systems</td>
<td>8</td>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>ACDM</td>
<td>Airport Collaborative Decision Making</td>
<td>31</td>
<td>15</td>
<td>21</td>
<td>31</td>
</tr>
<tr>
<td>AMET</td>
<td>Advanced Meteorological Information</td>
<td>15</td>
<td>2</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>APTA</td>
<td>Airport Accessibility</td>
<td>16</td>
<td>2</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>ASEP</td>
<td>Airborne Separation</td>
<td>32</td>
<td>23</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>ASUR</td>
<td>Alternative Surveillance</td>
<td>32</td>
<td>23</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>CCO</td>
<td>Continuous Climb Operations</td>
<td>12</td>
<td>2</td>
<td>21</td>
<td>35</td>
</tr>
<tr>
<td>CDO</td>
<td>Continuous Descent Operations</td>
<td>35</td>
<td>23</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>DATM</td>
<td>Digital Air Traffic Management</td>
<td>35</td>
<td>23</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>FICE</td>
<td>Flight and Flow Information for a Collaborative Environment (FF-ICE)</td>
<td>35</td>
<td>23</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>FRTO</td>
<td>Free-Route Operations</td>
<td>36</td>
<td>23</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>NOPS</td>
<td>Network Operations</td>
<td>36</td>
<td>23</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>OPFL</td>
<td>Optimum Flight Levels</td>
<td>36</td>
<td>23</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>RATS</td>
<td>Remote Aerodrome Control Towers</td>
<td>36</td>
<td>23</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>RPAS</td>
<td>Remotely Piloted Aircraft Systems (RPAS)</td>
<td>36</td>
<td>23</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>RSEQ</td>
<td>Runway Sequencing</td>
<td>36</td>
<td>23</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>SNET</td>
<td>Safety Nets</td>
<td>36</td>
<td>23</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>SURF</td>
<td>Surface Operations</td>
<td>36</td>
<td>23</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>SWIM</td>
<td>System-Wide Information Management</td>
<td>36</td>
<td>23</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>TBO</td>
<td>Trajectory-Based Operations</td>
<td>36</td>
<td>23</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>WAKE</td>
<td>Wake Turbulence Separation</td>
<td>36</td>
<td>23</td>
<td>23</td>
<td>32</td>
</tr>
</tbody>
</table>
ASBU Modules by Block

Block 0 - For implementation in the 2013 - 2018 timeframe

PIA 1: Airport Operations

<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0-ACDM</td>
<td>Airport Collaborative Decision Making - Improved Airport Operations through Airport-CDM</td>
</tr>
</tbody>
</table>

Performance Improvement Area

1: Airport Operations

<table>
<thead>
<tr>
<th>Summary Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implements collaborative applications that will allow the sharing of surface operations data among the different stakeholders on the airport. This will improve surface traffic management reducing delays on movement and manoeuvring areas and enhance safety, efficiency and situational awareness.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating Environment/Phases of Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodrome, terminal.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local for equipped/capable fleets and already established airport surface infrastructure.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (Derived from 1.1.2 and 1.2.2) Airport CDM procedures</td>
</tr>
<tr>
<td>2. (Derived from 1.1.2 and 1.2.2) Airport CDM tools</td>
</tr>
<tr>
<td>3. (Derived from 3.1 & 7.2.1) Collaborative departure queue management</td>
</tr>
<tr>
<td>Module Designation</td>
</tr>
<tr>
<td>--------------------</td>
</tr>
<tr>
<td>B0-APTA</td>
</tr>
</tbody>
</table>

Performance Improvement Area
1: Airport Operations

Summary Description
The use of Performance-based Navigation (PBN) and ground-based augmentation system (GBAS) landing system (GLS) procedures to enhance the reliability and predictability of approaches to runways, thus increasing safety, accessibility and efficiency. This is possible through the application of basic global navigation satellite system (GNSS), Baro-vertical navigation (VNAV), satellite-based augmentation system (SBAS) and GLS. The flexibility inherent in PBN approach design can be exploited to increase runway capacity.

Operating Environment/Phases of Flight
Approach.

Applicability Considerations
This Module is applicable to all instrument, and precision instrument runway ends, and to a limited extent, non-instrument runway ends.

Elements
1. (Derived from 4.1.1) PBN Approach Procedures with vertical guidance (LPV, LNAV/VNAV minima, using SBAS and Baro VNAV)
2. (Derived from 4.1.1) PBN Approach Procedures without vertical guidance (LP, LNAV minima; using SBAS)
3. (Derived from 1.3.2) GBAS Landing System (GLS) Approach procedures
Module Designation - B0-RSEQ

Begins page 49

Thread - Module Name

Runway Sequencing - Improved Traffic Flow through Sequencing (AMAN/DMAN)

Performance Improvement Area

1: Airport Operations

Summary Description

Manage arrivals and departures (including time-based metering) to and from a multi-runway aerodrome or locations with multiple dependent runways at closely proximate aerodromes, to efficiently utilize the inherent runway capacity.

Operating Environment/Phases of Flight

Aerodrome and terminal.

Applicability Considerations

Runways and terminal manoeuvring area in major hubs and metropolitan areas will be most in need of these improvements.

The improvement is least complex – runway sequencing procedures are widely used in aerodromes globally. However, some locations might have to confront environmental and operational challenges that will increase the complexity of development and implementation of technology and procedures to realize this Module.

Elements

1. (Derived from Element 1) AMAN via controlled time of arrival to a reference fix
2. (Derived from Element 1) AMAN via controlled time of arrival at the aerodrome
3. (Defined: Element 2) Departure management
4. (Derived from Element 2) Departure flow management
5. (Defined: Element 3) Point merge
<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0-SURF</td>
<td>Surface Operations - Safety and Efficiency of Surface Operations (A-SMGCS Level 1-2)</td>
<td>1: Airport Operations</td>
</tr>
</tbody>
</table>

Summary Description
Basic advanced-surface movement guidance and control systems (A-SMGCS) provides surveillance and alerting of movements of both aircraft and vehicles at the aerodrome, thus improving runway/aerodrome safety.

Automatic dependent surveillance-broadcast (ADS-B) information is used when available (ADS-B APT).

Operating Environment/Phases of Flight
Aerodrome surface movements (aircraft + vehicles), taxi, push-back, parking.

Applicability Considerations
A-SMGCS is applicable to any aerodrome and all classes of aircraft/vehicles. Implementation is to be based on requirements stemming from individual aerodrome operational and cost-benefit assessments.
ADS-B APT, when applied is an element of A-SMGCS, is designed to be applied at aerodromes with medium traffic complexity, having up to two active runways at a time and the runway width of minimum 45 m.

Elements
1. (Derived from Element 1) A-SMGCS with at least one cooperative surface surveillance system
2. (Derived from Element 1) Including ADS-B APT as an element of A-SMGCS
3. (Derived from Element 2) A-SMGCS alerting with flight identification information
4. (Derive from 1.4.1) Airport vehicles equipped with transponders
<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0-WAKE</td>
<td>Wake Turbulence Separation - Increased Runway Throughput through Optimized Wake Turbulence Separation</td>
<td>1: Airport Operations</td>
</tr>
</tbody>
</table>

Summary Description
Improves throughput on departure and arrival runways through optimized wake turbulence separation minima, revised aircraft wake turbulence categories and procedures.

Operating Environment/Phases of Flight
Arrival and departure.

Applicability Considerations
Least complex – Implementation of revised wake turbulence categories is mainly procedural. No changes to automation systems are needed.

Elements
1. (Defined: Element 1) New PANS-ATM wake turbulence categories and separation minima
2. (Derived from Element 2) Dependent diagonal paired approach procedures for parallel runways with centrelines spaced less than 760 meters (2,500 feet) apart
3. (Derived from Element 3) Wake independent departure and arrival procedures for parallel runways with centrelines spaced less than 760 meters (2,500 feet) apart
4. (Derived from Element 3) Wake turbulence mitigation for departures procedures for parallel runways with centrelines spaced less than 760 meters (2,500 feet) apart
5. (Identified by the United States) 6 wake turbulence categories and separation minima
PIA 2: Globally Interoperable Systems and Data - Through Globally Interoperable System Wide Information Management

<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0-AMET</td>
<td>Advanced Meteorological Information - Meteorological information supporting enhanced operational efficiency and safety</td>
</tr>
</tbody>
</table>

Performance Improvement Area

2: Globally Interoperable Systems and Data - Through Globally Interoperable System Wide Information Management

Summary Description

Global, regional and local meteorological information:

a) Forecasts provided by world area forecast centres (WAFCs), volcanic ash advisory centres (VAACs) and tropical cyclone advisory centres (TCAC).

b) Aerodrome warnings to give concise information of meteorological conditions that could adversely affect all aircraft at an aerodrome, including wind shear.

c) SIGMETs to provide information on occurrence or expected occurrence of specific en-route weather phenomena which may affect the safety of aircraft operations and other operational meteorological (OPMET) information, including METAR/SPECI and TAF, to provide routine and special observations and forecasts of meteorological conditions occurring or expected to occur at the aerodrome.

This information supports flexible airspace management, improved situational awareness and collaborative decision-making, and dynamically-optimized flight trajectory planning. This Module includes elements which should be viewed as a subset of all available meteorological information that can be used to support enhanced operational efficiency and safety.

Operating Environment/Phases of Flight

All phases of flight.

Applicability Considerations

Applicable to traffic flow planning, and to all aircraft operations in all domains and flight phases, regardless of level of aircraft equipage.

Elements

1. (Defined: Element 1) WAFS
2. (Defined: Element 2) IAVW
3. (Defined: Element 3) TCAC forecasts
4. (Defined: Element 4) Aerodrome warnings
5. (Defined: Element 5) Wind shear warnings and alerts
6. (Derived from Element 6) SIGMET
7. (Derived from Element 6) Other OPMET information (METAR, SPECI and/or TAF)
8. (Identified by NAT) QMS for MET
<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0-DATM</td>
<td>Digital Air Traffic Management - Service Improvement through Digital Aeronautical Information Management</td>
</tr>
</tbody>
</table>

Performance Improvement Area

2: Globally Interoperable Systems and Data - Through Globally Interoperable System Wide Information Management

Summary Description
The initial introduction of digital processing and management of information through, aeronautical information service (AIS)/aeronautical information management (AIM) implementation, use of aeronautical exchange model (AIXM), migration to electronic aeronautical information publication (AIP) and better quality and availability of data.

Operating Environment/Phases of Flight
All phases of flight.

Applicability Considerations
Applicable at State level with increased benefits as more States participate.

Elements
1. (Derived from 1.1.1) Aeronautical Information Exchange Model (AIXM)
2. (Derived from 3.1.3) eAIP
3. (Derived from 7.1) Digital NOTAM
4. (Identified by NACC) eTOD
5. (Identified by NACC) WGS-84
6. (Identified by NACC) QMS for AIM
Module Designation
B0-FICE

Thread - Module Name
Flight and Flow Information for a Collaborative Environment (FF-ICE) - Increased Interoperability, Efficiency and Capacity through Ground-Ground Integration

Performance Improvement Area
2: Globally Interoperable Systems and Data - Through Globally Interoperable System Wide Information Management

Summary Description
Improves coordination between air traffic service units (ATSU) by using ATS interfacility data communication (AIDC) defined by the ICAO Manual of Air Traffic Services Data Link Applications (Doc 9694). The transfer of communication in a data link environment improves the efficiency of this process, particularly for oceanic ATSU.

Operating Environment/Phases of Flight
All flight phases and all type of ATS units.

Applicability Considerations
Applicable to at least two area control centres (ACCs) dealing with en-route and/or terminal control area (TMA) airspace. A greater number of consecutive participating ACCs will increase the benefits.

Elements
1. (Derived from 1.1.4) AIDC to provide initial flight data to adjacent ATSU
2. (Derived from 1.1.5) AIDC to update previously coordinated flight data
3. (Derived from 1.1.5) AIDC for control transfer
4. (Derived from 1.1.6) AIDC to transfer CPDLC logon information to the Next Data Authority

Module Designation
B0-ACAS

Thread - Module Name
Airborne Collision Avoidance Systems - ACAS Improvements

Performance Improvement Area
3: Optimum Capacity and Flexible Flights – Through Global Collaborative ATM

Summary Description
Provides short-term improvements to existing airborne collision avoidance systems (ACAS) to reduce nuisance alerts while maintaining existing levels of safety. This will reduce trajectory deviations and increase safety in cases where there is a breakdown of separation.

Operating Environment/Phases of Flight
En-route flight phases and approach flight phases.

Applicability Considerations
Safety and operational benefits increase with the proportion of equipped aircraft.

Elements
1. (Derived from 1.3.2) ACAS II (TCAS version 7.1)
2. (Derived from 1.3.7 a) Auto Pilot/Flight Director (AP/FD) TCAS
3. (Derived from 1.3.7 b) TCAS Alert Prevention (TCAP)
Module Designation

<table>
<thead>
<tr>
<th>B0-ASEP</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begins page 253</td>
<td>Airborne Separation - Air Traffic Situational Awareness (ATSA)</td>
<td>3: Optimum Capacity and Flexible Flights – Through Global Collaborative ATM</td>
</tr>
</tbody>
</table>

Summary Description

Two air traffic situational awareness (ATSA) applications which will enhance safety and efficiency by providing pilots with the means to enhance traffic situational awareness and achieve quicker visual acquisition of targets:

- a) AIRB (basic airborne situational awareness during flight operations).
- b) VSA (visual separation on approach).

Operating Environment/Phases of Flight

En-route, terminal, approach.

Applicability Considerations

These are cockpit-based applications which do not require any support from the ground hence they can be used by any suitably equipped aircraft. This is dependent upon aircraft being equipped with ADS-B OUT. Avionics availability at low enough costs for General Aviation (GA) is not yet available.

Elements

1. (Defined: Element 1) ATSA-AIRB
2. (Defined: Element 2) ATSA-VSA

Module Designation

<table>
<thead>
<tr>
<th>B0-ASUR</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
</table>

Summary Description

Provides initial capability for lower cost ground surveillance supported by new technologies such as ADS-B OUT and wide area multilateration (MLAT) systems. This capability will be expressed in various ATM services, e.g. traffic information, search and rescue and separation provision.

Operating Environment/Phases of Flight

All airborne flight phases in continental or subsets of oceanic airspace and on aerodrome surfaces.

Applicability Considerations

This capability is characterized by being dependent/cooperative (ADS-B OUT) and independent/cooperative (MLAT). The overall performance of ADS-B is affected by avionics performance and compliant equipage rate.

Elements

1. (Defined: Element 1) ADS-B
2. (Defined: Element 2) Multilateration (MLAT)
<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0-FRTO</td>
<td>Free-Route Operations - Improved Operations through Enhanced En-Route Trajectories</td>
</tr>
<tr>
<td></td>
<td>Performance Improvement Area</td>
</tr>
<tr>
<td></td>
<td>3: Optimum Capacity and Flexible Flights – Through Global Collaborative ATM</td>
</tr>
</tbody>
</table>

Summary Description

Allow the use of airspace which would otherwise be segregated (i.e. Special Use Airspace) along with flexible routing adjusted for specific traffic patterns. This will allow greater routing possibilities, reducing potential congestion on trunk routes and busy crossing points, resulting in reduced flight lengths and fuel burn.

Operating Environment/Phases of Flight

En-route, TMA.

Applicability Considerations

Applicable to en-route airspace. Benefits can start locally. The larger the size of the concerned airspace the greater the benefits, in particular for flex track aspects. Benefits accrue to individual flights and flows. Application will naturally span over a long period as traffic develops. Its features can be introduced starting with the simplest ones.

Elements

1. (Derived from Element 1) CDM incorporated into airspace planning
2. (Defined: Element 2) Flexible Use of Airspace (FUA)
3. (Defined: Element 3) Flexible route systems
4. (Derived from Element 3) CPDLC used to request and receive re-route clearances

<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0-NOPS</td>
<td>Network Operations - Improved Flow Performance through Planning based on a Network-Wide view</td>
</tr>
<tr>
<td></td>
<td>Performance Improvement Area</td>
</tr>
<tr>
<td></td>
<td>3: Optimum Capacity and Flexible Flights – Through Global Collaborative ATM</td>
</tr>
</tbody>
</table>

Summary Description

Air traffic flow management (ATFM) is used to manage the flow of traffic in a way that minimizes delays and maximizes the use of the entire airspace. ATFM can regulate traffic flows involving departure slots, smooth flows and manage rates of entry into airspace along traffic axes, manage arrival time at waypoints or flight information region (FIR)/sector boundaries and re-route traffic to avoid saturated areas. ATFM may also be used to address system disruptions including a crisis caused by human or natural phenomena.

Operating Environment/Phases of Flight

Pre-flight phases, some action during actual flight.

Applicability Considerations

Region or sub-region..

Elements

1. (Derived from 1.1.1) ATFM
Module Designation

B0-OPFL
Begins page 273

Thread - Module Name

Optimum Flight Levels - Improved access to Optimum Flight Levels through Climb/Descent Procedures using ADS-B

Performance Improvement Area

3: Optimum Capacity and Flexible Flights – Through Global Collaborative ATM

Summary Description

Enables aircraft to reach a more satisfactory flight level for flight efficiency or to avoid turbulence for safety. The main benefit of ITP is significant fuel savings and the uplift of greater payloads.

Operating Environment/Phases of Flight

En-route.

Applicability Considerations

This can be applied to routes in procedural airspaces.

Elements

1. (Derived from 1.3.1) ITP using ADS-B

Module Designation

B0-SNET
Begins page 293

Thread - Module Name

Safety Nets - Increased Effectiveness of Ground-based Safety Nets

Performance Improvement Area

3: Optimum Capacity and Flexible Flights – Through Global Collaborative ATM

Summary Description

Monitors the operational environment during airborne phases of flight to provide timely alerts on the ground of an increased risk to flight safety. In this case, short-term conflict alert, area proximity warnings and minimum safe altitude warnings are proposed. Ground-based safety nets make an essential contribution to safety and remain required as long as the operational concept remains human centred.

Operating Environment/Phases of Flight

All airborne flight phases.

Applicability Considerations

Benefits increase as traffic density and complexity increase. Not all ground-based safety nets are relevant for each environment. Deployment of this Module should be accelerated.

Elements

1. (Defined: Element 1) Short Term Conflict Alert (STCA)
2. (Defined: Element 2) Area Proximity Warning (APW)
3. (Defined: Element 3) Minimum Safe Altitude Warning (MSAW)
4. (Identified by NACC) Medium Term Conflict Alert (MTCA)
PIA 4: Efficient Flight Path – Through Trajectory-based Operations

<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0-CCO</td>
<td>Continuous Climb Operations - Improved Flexibility and Efficiency in Departure Profiles - Continuous Climb Operations (CCO)</td>
<td>4: Efficient Flight Path – Through Trajectory-based Operations</td>
</tr>
</tbody>
</table>

Summary Description
Implements continuous climb operations (CCO) in conjunction with Performance-based Navigation (PBN) to provide opportunities to optimize throughput, improve flexibility, enable fuel-efficient climb profiles, and increase capacity at congested terminal areas.

Operating Environment/Phases of Flight
Departure and en-route.

Applicability Considerations
Regions, States or individual locations most in need of these improvements. For simplicity and implementation success, complexity can be divided into three tiers:

- **a)** Least complex – regional/States/locations with some foundational PBN operational experience that could capitalize on near-term enhancements, which include integrating procedures and optimizing performance.
- **b)** More complex – regional/State/locations that may or may not possess PBN experience, but would benefit from introducing new or enhanced procedures. However, many of these locations may have environmental and operational challenges that will add to the complexities of procedure development and implementation.
- **c)** Most complex – regional/State/locations in this tier will be the most challenging and complex to introduce integrated and optimized PBN operations. Traffic volume and airspace constraints are added complexities that must be confronted. Operational changes to these areas can have a profound effect on the entire State, region or location.

Elements
1. (Derived from Element 1) Procedure changes to facilitate CCO
2. (Derived from Element 1) Route changes to facilitate CCO
3. (Derived from Element 2) PBN SIDs
<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0-CDO</td>
<td>Continuous Descent Operations - Improved Flexibility and Efficiency in Descent Profiles (CDO)</td>
</tr>
</tbody>
</table>

Performance Improvement Area

4: Efficient Flight Path – Through Trajectory-based Operations

Summary Description

Performance-based airspace and arrival procedures allowing aircraft to fly their optimum profile using continuous descent operations (CDOs). This will optimize throughput, allow fuel efficient descent profiles, and increase capacity in terminal areas.

Operating Environment/Phases of Flight

Approach/arrivals and en-route.

Applicability Considerations

Regions, States or individual locations most in need of these improvements. For simplicity and implementation success, complexity can be divided into three tiers:

a) Least complex – regional/States/locations with some foundational PBN operational experience that could capitalize on near-term enhancements, which include integrating procedures and optimizing performance.

b) More complex – regional/State/locations that may or may not possess PBN experience, but would benefit from introducing new or enhanced procedures. However, many of these locations may have environmental and operational challenges that will add to the complexities of procedure development and implementation.

c) Most complex – regional/State/locations in this tier will be the most challenging and complex to introduce integrated and optimized PBN operations. Traffic volume and airspace constraints are added complexities that must be confronted. Operational changes to these areas can have a profound effect on the entire State, region or location.

Elements

1. (Derived from Element 1) Procedure changes to facilitate CDO
2. (Derived from Element 1) Route changes to facilitate CDO
3. (Derived from Element 2) PBN STARs
<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0-TBO</td>
<td>Trajectory-Based Operations - Improved Safety and Efficiency through the initial application of Data Link En-Route</td>
</tr>
</tbody>
</table>

Performance Improvement Area
4: Efficient Flight Path – Through Trajectory-based Operations

Summary Description
Implements an initial set of data link applications for surveillance and communications in air traffic control (ATC), supporting flexible routing, reduced separation and improved safety.

Operating Environment/Phases of Flight
En-route flight phases, including areas where radar systems cannot be installed such as remote or oceanic airspace.

Applicability Considerations
Requires good synchronization of airborne and ground deployment to generate significant benefits, in particular to those equipped. Benefits increase with the proportion of equipped aircraft.

Elements
1. (Defined: Element 1) ADS-C over oceanic and remote areas
2. (Defined: Element 2) Continental CPDLC
Block 1 - For implementation in the 2018 - 2023 timeframe

PIA 1: Airport Operations

<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-ACDM</td>
<td>Airport Collaborative Decision Making - Optimized Airport Operations through Airport-CDM</td>
</tr>
</tbody>
</table>

Summary Description

Enhances the planning and management of Airport Operations and allows their full integration for air traffic management using performance targets compliant with those of the surrounding airspace. This entails implementing collaborative airport operations planning (AOP) and where needed, an airport operations centre (APOC).

Operating Environment/Phases of Flight

Surface in, turn around, surface out.

Applicability Considerations

AOP: for use at all the airports (sophistication will depend on the complexity of the operations and their impact on the network).

APOC: will be implemented at major/complex airports (sophistication will depend on the complexity of the operations and their impact on the network).

Not applicable to aircraft.

Elements

1. (Derived from 1.3.1 a) Airport Operations Plan (AOP) which encompasses local airport information and information that is shared with the ATM system/ATM network manager
2. (Derived from 1.3.1 b) Airport performance framework integrated into AOP
3. (Derived from 1.3.1 b) Airport performance framework aligned with regional/national performance framework(s)
4. (Derived from 1.3.1 c) Decision making support to facilitate communication and coordination between airport stakeholders for joint planning
5. (Derived from 1.3.1 d) Accessible information on airport resource availability and planned aircraft operations for use by airport operators and ATM system/network managers
6. (Derived from 1.3.1 e) Real time monitoring and alerting to activate collaborative airside/landside airport operations to respond to specific conditions, such as specified meteorological conditions/events
<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-APTA</td>
<td>Airport Accessibility - Optimized Airport Accessibility</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Airport Operations</td>
</tr>
</tbody>
</table>

Summary Description
Progresses further with the universal implementation of Performance-based Navigation (PBN) approaches. PBN and GLS (CAT II/III) procedures to enhance the reliability and predictability of approaches to runways, increasing safety, accessibility and efficiency.

Operating Environment/Phases of Flight
Approach and landing.

Applicability Considerations
This module is applicable to all runway ends.

Elements
1. (Derived from 1.3.1) CAT II PBN approach procedures
2. (Derived from 1.3.1) CAT III PBN approach procedures
3. (Derived from 1.3.1) CAT II GLS approach procedures
4. (Derived from 1.3.1) CAT III GLS approach procedures
5. (Derived from 1.3.1) PBN STARs directly integrated to approaches with vertical guidance
Module Designation

B1-RATS

Begins on page 111

<table>
<thead>
<tr>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Aerodrome Control Towers - Remotely Operated Aerodrome Control</td>
<td>1: Airport Operations</td>
</tr>
</tbody>
</table>

Summary Description

Provides a safe and cost-effective air traffic services (ATS) from a remote facility to one or more aerodromes where dedicated, local ATS are no longer sustainable or cost-effective, but there is a local economic and social benefit from aviation. This can also be applied to contingency situations and depends on enhanced situational awareness of the aerodrome under remote control.

Operating Environment/Phases of Flight

TMA, descent, airport surface, climb out.

Applicability Considerations

The main target for the single and multiple remote tower services are small rural airports, which today are struggling with low business margins. Both ATC and AFIS aerodromes are expected to benefit.

The main targets for the contingency tower solution are medium to large airports – those that are large enough to require a contingency solution, but require an alternative to A-SMGCS-based “heads down” solutions or where maintaining a visual view is required.

Although some cost benefits are possible with remote provision of ATS to a single aerodrome, maximum benefit is expected with the remote of ATS to multiple aerodromes.

Elements

1. (Derived from Element 1) Provision of tower control (TWR) or aerodrome flight information service (AFIS) for single aerodrome(s) by remotely located air traffic controllers (ATCO) or aerodrome flight information service officers (AFISO).
2. (Derived from Element 2) Provision of TWR or AFIS for multiple aerodromes by a single ATCO or AFISO.
3. (Defined: Element 3) Remote provision of ATS for contingency situations
Module Designation: B1-RSEQ

Begins on page 55

Thread - Module Name
Runway Sequencing - Improved Airport operations through Departure, Surface and Arrival Management

Performance Improvement Area
1: Airport Operations

Summary Description
Extension of arrival metering and integration of surface management with departure sequencing will improve runway management and increase airport performance and flight efficiency.

Operating Environment/Phases of Flight
Aerodrome and terminal.

Applicability Considerations
Runways and terminal manoeuvring areas in major hubs and metropolitan areas will be most in need of these improvements. Complexity in implementation of this Module depends on several factors. Some locations might have to confront environmental and operational challenges that will increase the complexity of development and implementation of technology and procedures to realize this Module. Performance-based Navigation (PBN) routes need to be in place.

Elements
1. (Derived from Element 1 and 4.1.1) Surface management of runway demand and sequencing aircraft on the ground to support departure operations based on precise surface movement tracking
2. (Derived from Element 2) Integration of departure sequencing and surface management
3. (Derived from Element 3) Arrival metering extended across FIR boundaries
4. (Derived from Element 4) Assignment of RNAV/RNP routes linked to controlled time of arrival at metering fixes
<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
</tr>
</thead>
</table>

Performance Improvement Area
1: Airport Operations

Summary Description
Provides enhancements for surface situational awareness, including both cockpit and ground elements, in the interest of runway and taxiway safety, and surface movement efficiency. Cockpit improvements including the use of surface moving maps with traffic information (SURF), runway safety alerting logic (SURF-IA), and enhanced vision systems (EVS) for low visibility taxi operations.

Operating Environment/Phases of Flight
Aerodrome operations.

Applicability
For SURF and SURF-IA, applicable to large aerodromes (ICAO codes 3 and 4) and all classes of aircraft; cockpit capabilities work independently of ground infrastructure, but other aircraft equipage and/or ground surveillance broadcast will improve.

Elements
1. (Derived from 1.4.1) Basic surface situation awareness (SURF) through display of other aerodrome traffic to aircraft via ADS-B or TIS-B
2. (Derived from 1.4.2) SURF with Indications and Alerts (SURF-IA) for aircraft
3. (Derived from 1.4.3 & 1.4.4) SURF for airport vehicles
4. (Derived from 1.4.4) SURF-IA for airport vehicles
5. (Defined: Element 2) Enhanced vision systems for taxi operations
Module Designation
B1-WAKE

Begins on page 35

Thread - Module Name
Wake Turbulence Separation - Increased Runway Throughput through Dynamic Wake Turbulence Separation

Performance Improvement Area
1: Airport Operations

Summary Description
Improved throughput on departure and arrival runways through the dynamic management of wake turbulence separation minima based on the real-time identification of wake turbulence hazards.

Operating Environment/Phases of Flight
Aerodrome.

Applicability Considerations
Least complex – implementation of re-categorized wake turbulence is mainly procedural.
No changes to automation systems are needed.

Elements
1. (Derived from Element 1 and 3.1.1) PANS-ATM aircraft leader/follower pair-wise wake turbulence separation minima.

2. (Derived from Element 2 and 3.2.1) Wake Turbulence Mitigation for Arrivals (WTMA) on parallel runways with runway centre lines spaced less than 760 m (2 500 feet) apart or on a single runway through variable application of wake turbulence separation dependant on the crosswinds present along the approach corridor.

3. (Derived from Element 3) Wake Turbulence Mitigation for Departures (WTMD) on parallel runways with runway centre lines spaced less than 760 m (2 500 feet) through reduction of separation between departures when runway crosswinds are of sufficient strength and persistence.
PIA 2: Globally Interoperable Systems and Data - Through Globally Interoperable System Wide Information Management

<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-AMET</td>
<td>Advanced Meteorological Information - Enhanced Operational Decisions through Integrated Meteorological Information (Planning and Near-term Service)</td>
<td>2: Globally Interoperable Systems and Data - Through Globally Interoperable System Wide Information Management</td>
<td></td>
</tr>
</tbody>
</table>

Summary
Enables the reliable identification of solutions when forecast or observed meteorological conditions impact aerodromes or airspace. Full ATM-Meteorology integration is needed to ensure that: meteorological information is included in the logic of a decision process and the impact of the meteorological conditions (the constraints) are automatically calculated and taken into account. The decision time-horizons range from minutes, to several hours or days ahead of the ATM operation (this includes optimum flight profile planning and tactical in-flight avoidance of hazardous meteorological conditions) to typically enable near-term and planning (>20 minutes) type of decision making. This Module also promotes the establishment of Standards for global exchange of the information.

Appreciating that the number of flights operating on cross-polar and trans-polar routes continues to steadily grow and recognizing that space weather affecting the earth’s surface or atmosphere (such as solar radiation storms) pose a hazard to communications and navigation systems and may also pose a radiation risk to flight crew members and passengers, this module acknowledges the need for space weather information services in support of safe and efficient international air navigation. Unlike traditional meteorological disturbances which tend to be local or sub-regional in scale, the effects of space weather disturbances can be global in nature (although tend to be more prevalent in the polar regions), with much more rapid onset.

This Module builds, in particular, upon Module B0-AMET, which detailed a subset of all available meteorological information that can be used to support enhanced operational efficiency and safety.

Operating Environment/Phases of Flight
All flight phases.

Applicability Considerations
Applicable to traffic flow planning, and to all aircraft operations in all domains and flight phases, regardless of level of aircraft equipage.

Elements

1. (Derived from Element 1 and 1.3.2) Producing meteorological information elements that can be ingested by automated decision support tools.
2. (Derived from Element 2) Automated processing of meteorological information to derive predicted effects on airspace capacity.
3. (Derived from Element 2) Automated processing of meteorological information to derive predicted effects on aerodrome capacity.
4. (Derived from Element 3) Comparison of predicted meteorological airspace capacity constraints to projected demand.
5. (Derived from Element 3) Comparison of predicted meteorological aerodrome capacity constraints to projected demand.
6. (Derived from Element 4) Meteorological information integrated decision support that creates ranked mitigation strategies.
<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
<th>Summary Description</th>
<th>Operating Environment/Phases of Flight</th>
<th>Applicability Considerations</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-DATM</td>
<td>Digital Air Traffic Management - Service Improvement through Integration of all Digital ATM Information</td>
<td>2: Globally Interoperable Systems and Data - Through Globally Interoperable System Wide Information Management</td>
<td>Implements the ATM information reference model, integrating all ATM information, using common formats (UML/XML and WXXM) for meteorological information, FIXM for flight and flow information and Internet protocols.</td>
<td>All phases of flight.</td>
<td>Applicable at State level, with increased benefits as more States participate.</td>
<td>1. (Derived from 1.1.1) Implementation of digital information management using WXXM for meteorological information 2. (Derived from 1.1.1) Implementation of digital information management using FIXM for flight and flow information 3. (Derived from 1.1.1) Implementation of digital information management for aircraft performance-related data</td>
</tr>
<tr>
<td>B1-FICE</td>
<td>Flight and Flow Information for a Collaborative Environment (FF-ICE) - Increased Interoperability, Efficiency and Capacity though FF-ICE, Step 1 application before Departure</td>
<td>2: Globally Interoperable Systems and Data - Through Globally Interoperable System Wide Information Management</td>
<td>Introduces FF-ICE, Step 1 providing ground-ground exchanges using a common flight information reference model (FIXM) and extensible markup language (XML) standard formats before departure.</td>
<td>Planning phase for FF-ICE, Step 1.</td>
<td>Applicable between ATS units to facilitate exchange between ATM service provider (ASP), airspace user operations and Airport Operations.</td>
<td>1. (Derived from 1.3.5 a) Ability for ATS to receive early flight intention information 2. (Derived from 1.3.5 b) Ability for AOC and ATS to exchange 4D trajectory information 3. (Derived from 1.3.5 c) Implementation of a flight and flow information format using internet protocol and XML 4. (Derived from 1.3.5 d) Allocation and use of globally unique flight identifiers (GUFI) 5. (Derived from 1.3.5 e) Ability for ATS to receive FF-ICE information elements</td>
</tr>
</tbody>
</table>
Module Designation

B1-SWIM

Begins on page 159

Thread - Module Name

System-Wide Information Management - Performance Improvement through the application of System-Wide Information Management (SWIM)

Performance Improvement Area

2: Globally Interoperable Systems and Data - Through Globally Interoperable System Wide Information Management

Summary Description

Implementation of system-wide information management (SWIM) services (applications and infrastructure) creating the aviation Intranet based on standard data models and Internet-based protocols to maximize interoperability.

Operating Environment/Phases of Flight

All phases of flight.

Applicability Considerations

Applicable at State level, with increased benefits as more States participate.

Elements

1. (Derived from 1.1.5 a) Implement structure/protocols for sharing information within communities of interest
2. (Derived from 8.1) PANS-AIM

PIA 3: Optimum Capacity and Flexible Flights - Through Global Collaborative ATM

Module Designation

B1-ASEP

Begins on page 259

Thread - Module Name

Airborne Separation - Increased Capacity and Efficiency through Interval Management

Performance Improvement Area

3: Optimum Capacity and Flexible Flights - Through Global Collaborative ATM

Summary Description

Interval management (IM) improves the organization of traffic flows and aircraft spacing. This creates operational benefits through precise management of intervals between aircraft with common or merging trajectories, thus maximizing airspace throughput while reducing ATC workload along with more efficient aircraft fuel burn reducing environmental impact.

Operating Environment/Phases of Flight

En-route, arrival, approach, departure.

Applicability Considerations

En-route and terminal areas.

Elements

1. (Derived from 1.1.1, 1.1.2 and 1.3.1) Implementation of procedures for aircraft to be cleared to maintain a specified distance from a preceding aircraft from top of descent to the initial or final approach fix
2. (Derived from 1.1.1, 1.1.2 and 1.3.1) Implementation of procedures for aircraft to be cleared to maintain a specified time interval between it and a preceding aircraft from top of descent to the initial or final approach fix
<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-FRTO</td>
<td>Free-Route Operations - Improved Operations through Optimized ATS Routing</td>
</tr>
</tbody>
</table>

Performance Improvement Area
3: Optimum Capacity and Flexible Flights - Through Global Collaborative ATM

Summary Description
Provides, through Performance-based Navigation (PBN), closer and consistent route spacing, curved approaches, parallel offsets and the reduction of holding area size. This will allow the sectorization of airspace to be adjusted more dynamically. This will reduce potential congestion on trunk routes and busy crossing points and reduce controller workload. The main goal is to allow flight plans to be filed with a significant part of the intended route specified by the user-preferred profile. Maximum freedom will be granted within the limits posed by the other traffic flows. The overall benefits are reduced fuel burn and emissions.

Operating Environment/Phases of Flight
En-route, including oceanic and remote areas and TMA.

Applicability Considerations
Region or sub-region: the geographical extent of the airspace of application should be large enough; significant benefits arise when the dynamic routes can apply across flight information region (FIR) boundaries rather than imposing traffic to cross boundaries at fixed predefined points.

Elements
1. (Derived from Element 1) Free routing, including within defined airspace and/or at defined times and/or within defined flows
2. (Derived from Element 2 (1.4.3 b)) Maintaining same PBN route spacing between straight and turning segments
3. (Derived from Element 2 (1.4.3 c)) Publishing PBN holding procedures
4. (Defined: Element 3) Dynamic sectorization
<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
</tr>
</thead>
</table>

Performance Improvement Area

3: Optimum Capacity and Flexible Flights - Through Global Collaborative ATM

Summary Description

Introduces enhanced processes to manage flows or groups of flights in order to improve overall flow. The resulting increased collaboration among stakeholders in real-time, regarding user preferences and system capabilities will result in better use of airspace with positive effects on the overall cost of ATM.

Operating Environment/Phases of Flight

Mainly applicable to pre-flight phases, with some application in flight.

Applicability Considerations

Region or sub-region for most applications; specific airports in case of initial user-driven prioritization process (UDPP). This Module is more particularly needed in areas with the highest traffic density. However, the techniques it contains would also be of benefit to areas with less traffic, subject to the business case.

Elements

1. (Derived from Element 1) Improving ATFM algorithms and techniques
2. (Derived from Element 1) Integrating ATFM and Airspace Organization and Management (AOM) in the design of alternative route options for ATFM
3. (Derived from Element 2) Using trajectory projections as soon as possible after departure to update ATFM requirements and perform additional ATFM smoothing for single flows
4. (Derived from Element 2) Using trajectory projections as soon as possible after departure to update ATFM requirements and perform additional ATFM smoothing for converging flows
5. (Derived from Element 3) Initial User Driven Prioritization Process (UDPP) whereby operators affected by ATFM measures can collaborate with each other and ATFM to devise alternative measures that serve ATFM requirements while at the same time taking account of operators’ priorities
Safety Nets - Ground-based Safety Nets on Approach

- **Module Designation**: B1-SNET
- **Begins on page**: 297

Performance Improvement Area
3: Optimum Capacity and Flexible Flights - Through Global Collaborative ATM

Summary Description
Enhances safety by reducing the risk of controlled flight into terrain accidents on final approach through the use of an approach path monitor (APM). APM warns the controller of increased risk of controlled flight into terrain during final approaches. The major benefit is a significant reduction of the number of major incidents.

Operating Environment/Phases of Flight
Approach.

Applicability Considerations
This Module will increase safety benefits during final approach particularly where terrain or obstacles represent safety hazards. Benefits increase as traffic density and complexity increase.

Elements
1. (Derived from 1.3.1) Implementation of Approach Path Monitor (APM), which generates timely alerts to ATCOs if aircraft are in unsafe proximity to obstacles or terrain during final approach
2. (Derived from 1.3.2) Implementation of accurate approach path model in APM which minimizes nuisance alerts

Continuous Descent Operations - Improved Flexibility and Efficiency in Descent Profiles (CDOs) using VNAV

- **Module Designation**: B1-CDO
- **Begins on page**: 311

Performance Improvement Area
4: Efficient Flight Paths - Through Trajectory-based Operations

Summary Description
Enhances vertical flight path precision during descent, arrival, and enables aircraft to fly an arrival procedure not reliant on ground-based equipment for vertical guidance. The main benefit is higher utilization of airports, improved fuel efficiency, increased safety through improved flight predictability and reduced radio transmission, and better utilization of airspace.

Operating Environment/Phases of Flight
Descent, arrival, flight in terminal area.

Applicability Considerations
Terminal arrival and departure procedures.

Elements
1. (Derived from 1.2.1 and 1.3.1) CDO procedures defined as vertical paths to be followed within specified tolerances
Module Designation: B1-RPAS
Begins on page 357

Thread - Module Name
Remotely Piloted Aircraft Systems (RPAS) - Initial Integration of Remotely Piloted Aircraft (RPA) Systems into non-segregated airspace

Performance Improvement Area
4: Efficient Flight Paths - Through Trajectory-based Operations

Summary Description
Implementation of basic procedures for operating remotely piloted aircraft (RPA) in non-segregated airspace, including detect and avoid.

Operating Environment/Phases of Flight
En-route, oceanic, terminal (arrival and departure), aerodrome (taxi, takeoff and landing).

Applicability Considerations
Applies to all RPA operating in non-segregated airspace and at aerodromes. Requires good synchronization of airborne and ground deployment to generate significant benefits, in particular to those able to meet minimum certification and equipment requirements.

Elements
1. (Derived from 1.3.1 a) Streamlined process for RPA access to non-segregated airspace
2. (Derived from 1.3.1 b) Defined airworthiness certification for RPA
3. (Derived from 1.3.1 c) Defined operator certification for RPA operators
4. (Derived from 1.3.1 d) Defined communication performance requirements for Command and Control (C2) links and for ATC communications
5. (Derived from 1.3.1 e) Defined remote pilot licencing requirements
6. (Derived from 1.3.1 f) Defined detect and avoid technology performance requirements
<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-TBO</td>
<td>Trajectory-Based Operations - Improved Traffic Synchronization and Initial Trajectory-Based Operation</td>
</tr>
</tbody>
</table>

Performance Improvement Area

4: Efficient Flight Paths - Through Trajectory-based Operations

Summary

Improves the synchronization of traffic flows at en-route merging points and to optimize the approach sequence through the use of 4DTRAD capability and airport applications, e.g. D-TAXI.

Operating Environment/Phases of Flight

All flight phases.

Applicability Considerations

Requires good synchronization of airborne and ground deployment to generate significant benefits, in particular to those equipped. Benefit increases with size of equipped aircraft population in the area where the services are provided.

Elements

1. (Derived from 1.3.1) Ability to download trajectory information via air/ground data link
2. (Derived from 1.3.1) Ability to exchange complex route clearances via ground/ground data link from one ANSP to another
3. (Derived from 1.3.1) Ability to exchange complex route clearances via ground/ground data link across multiple airspace boundaries
4. (Derived from Element 1) Initial 4D operations by specifying Required Time of Arrival (RTA)
5. (Defined: Element 2) Data Link Operational Terminal Information Service (D-OTIS)
6. (Derived from Element 3) Departure clearances via data link (DCL)
7. (Defined: Element 4) Data Link Taxi (D-TAXI)
Block 2 - For implementation in the 2023 - 2028 timeframe

PIA 1: Airport Operations

<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
<th>Operating Environment/Phases of Flight</th>
<th>Applicability Considerations</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-RSEQ</td>
<td>Runway Sequencing - Linked Arrival Management and Departure Management (AMAN/DMAN)</td>
<td>1: Airport Operations</td>
<td>Aerodrome and terminal.</td>
<td>Runways and terminal manoeuvring area in major hubs and metropolitan areas will be most in need of these improvements. The implementation of this Module is least complex. Some locations might have to confront environmental and operational challenges that will increase the complexity of development and implementation technology and procedures to realize this Block. Infrastructure for RNAP/RNP routes need to be in place.</td>
<td>1. TBD</td>
</tr>
</tbody>
</table>

B2-SURF

<table>
<thead>
<tr>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
<th>Operating Environment/Phases of Flight</th>
<th>Applicability Considerations</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Operations - Optimized Surface Routing and Safety Benefits (A-SMGCS Level 3-4 and SVS)</td>
<td>1: Airport Operations</td>
<td>Aerodrome.</td>
<td>Most applicable to large aerodromes with high demand, as the Upgrades address issues surrounding queueing and management and complex aerodrome operations.</td>
<td>1. TBD</td>
</tr>
</tbody>
</table>

To improve efficiency and reduce the environmental impact of surface operations, even during periods of low visibility, Queuing for departure runways is reduced to the minimum necessary to optimize runway use and taxi times are also reduced. Operations will be improved so that low visibility conditions have only a minor effect on surface movement.
<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-WAKE</td>
<td>Wake Turbulence Separation - Advanced Wake Turbulence Separation (Time-based)</td>
<td>1: Airport Operations</td>
</tr>
</tbody>
</table>

Summary Description
The application of time-based aircraft-to-aircraft wake separation minima and changes to the procedures the ANSP uses to apply wake separation minima.

Operating Environment/Phases of Flight
Aerodrome.

Applicability Considerations
Most complex – establishment of time-based separation criteria between pairs of aircraft extends the existing variable distance re-categorization of existing wake turbulence into a conditions-specific time-based interval. This will optimize the interoperation wait time to the minimum required for wake disassociation and runway occupancy. Runway throughput is increased as a result.

Elements
1. TBD

<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-FICE</td>
<td>Flight and Flow Information for a Collaborative Environment (FF-ICE) - Improved Coordination through Multi-centre Ground-Ground Integration (FF ICE, Step 1 and Flight Object, SWIM)</td>
<td>2: Globally Interoperable Systems and Data</td>
</tr>
</tbody>
</table>

Summary Description
FF-ICE supporting trajectory-based operations through exchange and distribution of information for multi-centre operations using flight object implementation and interoperability (IOP) standards. Extension of use of FF-ICE after departure, supporting trajectory-based operations. New system interoperability SARPs to support the sharing of ATM services involving more than two air traffic service units (ATSUs).

Operating Environment/Phases of Flight
All flight phases and all types of ground stakeholders.

Applicability Considerations
Applicable to all ground stakeholders (ATS, airports, airspace users) in homogeneous areas, potentially global.

Elements
1. TBD
<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-SWIM</td>
<td>System-Wide Information Management - Enabling Airborne Participation in Collaborative ATM through SWIM</td>
<td>2: Globally Interoperable Systems and Data</td>
</tr>
</tbody>
</table>

Summary Description

This allows the aircraft to be fully connected as an information node in SWIM, enabling full participation in collaborative ATM processes with exchange of data including meteorology. This will start with non-safety critical exchanges supported by commercial data links.

Operating Environment/Phases of Flight

All phases of flight.

Applicability

Long-term evolution potentially applicable to all environments.

Elements

1. TBD

PIA 3: Optimum Capacity and Flexible Flights

<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-ACAS</td>
<td>Airborne Collision Avoidance Systems - New Collision Avoidance System</td>
<td>3: Optimum Capacity and Flexible Flights</td>
</tr>
</tbody>
</table>

Summary Description

Implementation of the airborne collision avoidance system (ACAS) adapted to trajectory-based operations with improved surveillance function supported by ADS-B and adaptive collision avoidance logic aiming at reducing nuisance alerts and minimizing deviations.

The implementation of a new airborne collision warning system will enable more efficient operations and future airspace procedures while complying with safety regulations. The new system will accurately discriminate between necessary alerts and “nuisance alerts”. This improved differentiation will lead to a reduction in controller workload as personnel will spend less time to respond to “nuisance alerts”. This will result in a reduction in the probability of a near mid-air collision.

Operating Environment/Phases of Flight

Aerodrome.

Applicability Considerations

Safety and operational benefits increase with the proportion of equipped aircraft. The safety case needs to be carefully done.

Elements

1. TBD
Module Designation

<table>
<thead>
<tr>
<th>B2-ASEP</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begins page 265</td>
<td>Airborne Separation - Airborne Separation (ASEP)</td>
<td>3: Optimum Capacity and Flexible Flights</td>
</tr>
</tbody>
</table>

Summary Description

Creation of operational benefits through temporary delegation of responsibility to the flight deck for separation provision with suitably equipped designated aircraft, thus reducing the need for conflict resolution clearances while reducing ATC workload and enabling more efficient flight profiles. The flight crew ensures separation from suitably equipped designated aircraft as communicated in new clearances, which relieve the controller of the responsibility for separation between these aircraft. However, the controller retains responsibility for separation from aircraft that are not part of these clearances.

Operating Environment/Phases of Flight

En-route phase, oceanic, and approach, departure and arrival.

Applicability Considerations

The safety case needs to be carefully done and the impact on capacity is still to be assessed in case of delegation of separation for a particular situation implying new regulation on airborne equipment and equipage roles and responsibilities (new procedure and training). First applications of ASEP are envisaged in Oceanic airspace and in approach for closely-spaced parallel runways.

Elements

1. TBD

Module Designation

<table>
<thead>
<tr>
<th>B2-NOPS</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begins page 239</td>
<td>Network Operations - Increased User Involvement in the Dynamic Utilization of the Network</td>
<td>3: Optimum Capacity and Flexible Flights</td>
</tr>
</tbody>
</table>

Summary Description

CDM applications supported by SWIM that permit airspace users to manage competition and prioritization of complex ATFM solutions when the network or its nodes (airports, sector) no longer provide enough capacity to meet user demands. This further develops the CDM applications by which ATM will be able to offer/delegate to the users the optimization of solutions to flow problems. Benefits include an improvement in the use of available capacity and optimized airline operations in degraded situations.

Operating Environment/Phases of Flight

Pre-flight phases.

Applicability Considerations

Region or sub-region.

Elements

1. TBD
PIA 4: Efficient Flight Paths

<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-CDO</td>
<td>Continuous Descent Operations - Improved Flexibility and Efficiency in Continuous Descent Profiles (CDOs) Using VNAV, Required Speed and Time at Arrival</td>
<td>4: Efficient Flight Paths</td>
</tr>
</tbody>
</table>

Summary Description
A key emphasis is on the use of arrival procedures that allow the aircraft to apply little or no throttle in areas where traffic levels would otherwise prohibit this operation. This Block will consider airspace complexity, air traffic workload, and procedure design to enable optimized arrivals in dense airspace.

Operating Environment/Phases of Flight
En-route, terminal area, descent.

Applicability Considerations
Global, high-density airspace (based on the United States FAA procedures).

Elements
1. TBD

<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
</table>

Summary Description
Continuing to improve the remotely piloted aircraft (RPA) access to non-segregated airspace; continuing to improve the remotely piloted aircraft system (RPAS) approval/certification process; continuing to define and refine the RPAS operational procedures; continuing to refine communication performance requirements; standardizing the command and control (C2) link failure procedures and agreeing on a unique squawk code for C2 link failure; and working on detect and avoid technologies, to include automatic dependent surveillance – broadcast (ADS-B) and algorithm development to integrate RPA into the airspace.

Operating Environment/Phases of Flight
All phases of flight including taxi.

Applicability Considerations
Applies to all RPA operating in non-segregated airspace and at aerodromes. Requires good synchronization of airborne and ground deployment to generate significant benefits, in particular to those able to meet minimum certification and equipment requirements.

Elements
1. TBD
Block 3 - For implementation in the 2028 - onwards timeframe

PIA 1: Airport Operations

<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-RSEQ</td>
<td>Runway Sequencing - Integration AMAN/DMAN/SMAN</td>
<td>1: Airport Operations</td>
</tr>
</tbody>
</table>

Summary Description
This Module includes a brief description of integrated arrival, en-route, surface, and departure management.

Operating Environment/Phases of Flight
All phases of flight.

Applicability Considerations
Runways and terminal manoeuvring areas in major hubs and metropolitan areas will be most in need of these improvements. Complexity in implementation of this Block depends on several factors. Some locations might have to confront environmental and operational challenges that will increase the complexity of development and implementation of technology and procedures to realize this Block. Infrastructure for RNAV/RNP routes need to be in place.

Elements
1. TBD
PIA 2: Globally Interoperable Systems and Data

<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-AMET</td>
<td>Advanced Meteorological Information - Enhanced Operational Decisions through Integrated Meteorological Information (Near-term and Immediate Service)</td>
<td>2: Globally Interoperable Systems and Data</td>
</tr>
</tbody>
</table>

Summary

The aim of this Module is to enhance global ATM decision-making in the face of hazardous meteorological conditions in the context of decisions that should have an immediate effect. This Module builds upon the initial information integration concept and capabilities developed under B1-AMET. Key points are a) tactical avoidance of hazardous meteorological conditions in especially the 0-20 minute time frame; b) greater use of aircraft based capabilities to detect meteorological parameters (e.g. turbulence, winds, and humidity); and c) display of meteorological information to enhance situational awareness. This Module also promotes further the establishment of Standards for the global exchange of the information.

Operating Environment/Phases of Flight

All.

Applicability Considerations

Applicable to air traffic flow planning, en-route operations, terminal operations (arrival/departure) and surface. Aircraft equipage is assumed in the areas of ADS-B IN/CDTI, aircraft-based meteorological observations, and meteorological information display capabilities, such as EFBs.

Elements

1. TBD

<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-FICE</td>
<td>Flight and Flow Information for a Collaborative Environment (FF-ICE) - Improved Operational Performance through the Introduction of Full FF-ICE</td>
<td>2: Globally Interoperable Systems and Data</td>
</tr>
</tbody>
</table>

Summary Description

Data for all relevant flights systematically shared between the air and ground systems using SWIM in support of collaborative ATM and trajectory-based operations.

Operating Environment/Phases of Flight

All phases of flight from initial planning to post-flight.

Applicability Considerations

Air and ground.

Elements

1. TBD
PIA 3: Optimum Capacity and Flexible Flights

<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-NOPS</td>
<td>Network Operations - Traffic Complexity Management</td>
<td>3: Optimum Capacity and Flexible Flights</td>
</tr>
</tbody>
</table>

Summary Description
Introduction of complexity management to address events and phenomena that affect traffic flows due to physical limitations, economic reasons or particular events and conditions by exploiting the more accurate and rich information environment of SWIM-based ATM. Benefits will include optimized usage and efficiency of system capacity.

Operating environment/Phases of flight
Pre-flight and in-flight.

Applicability Considerations
Regional or sub-regional. Benefits are only significant over a certain geographical size and assume that it is possible to know and control/optimize relevant parameters. Benefits mainly useful in the higher density airspace.

Elements
1. TBD

PIA 4: Efficient Flight Paths

<table>
<thead>
<tr>
<th>Module Designation</th>
<th>Thread - Module Name</th>
<th>Performance Improvement Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-RPAS</td>
<td>Remotely Piloted Aircraft Systems (RPAS) - Remotely Piloted Aircraft (RPA) Transparent Management</td>
<td>4: Efficient Flight Paths</td>
</tr>
</tbody>
</table>

Summary Description
Continuing to improve the certification process for remotely piloted aircraft (RPA) in all classes of airspace, working on developing a reliable command and control (C2) link, developing and certifying airborne detect and avoid (ABDAA) algorithms for collision avoidance, and integration of RPA into aerodrome procedures.

Operating Environment/Phases of Flight
En-route, oceanic, terminal (arrival and departure), aerodrome (taxi, take-off and landing).

Applicability Considerations
Applies to all RPA operating in non-segregated airspace and at aerodromes. Requires good synchronization of airborne and ground deployment to generate significant benefits, in particular to those able to meet minimum certification and equipment requirements.

Elements
1. TBD
Module Designation
B3-TBO

Begins page 339

Thread - Module Name
Trajectory Based Operations - Full 4D Trajectory-based Operations

Performance Improvement Area
4: Efficient Flight Paths

Summary Description
The development of advanced concepts and technologies, supporting four dimensional trajectories (latitude, longitude, altitude, time) and velocity to enhance global ATM decision-making. A key emphasis is on integrating all flight information to obtain the most accurate trajectory model for ground automation.

Operating Environment/Phases of Flight
En-route/cruise, terminal area, traffic flow management, descent.

Applicability Considerations
Applicable to air traffic flow planning, en-route operations, terminal operations (approach/departure), and arrival operations. Benefits accrue to both flows and individual aircraft. Aircraft equipage is assumed in the areas of: ADS-B IN/CDTI; data communication and advanced navigation capabilities. Requires good synchronization of airborne and ground deployment to generate significant benefits, in particular to those equipped. Benefit increases with size of equipped aircraft population in the areas where the services are provided.

Elements
1. TBD

-- END --